z-logo
open-access-imgOpen Access
Gene Expression Changes and Anti-proliferative Effect of Noni (Morinda Citrifolia) Fruit Extract Analysed by Real Time-PCR
Author(s) -
Susilawati Susilawati,
Susilawati Susilawati
Publication year - 2017
Publication title -
molekul
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.125
H-Index - 2
eISSN - 2503-0310
pISSN - 1907-9761
DOI - 10.20884/1.jm.2017.12.1.333
Subject(s) - morinda , cell cycle , gene , saccharomyces cerevisiae , gene expression , biology , microbiology and biotechnology , cell cycle checkpoint , cell growth , cell division , cell , biochemistry , traditional medicine , medicine
To elucidate the anti-proliferative effect of noni (Morinda citrifolia) fruit extract for a Saccharomyces cerevisiae model organism, analysis of gene expression changes related to cell cycle associated with inhibition effect of noni fruit extract was carried out. Anti-proliferative of noni fruit extract was analyzed using gene expression changes of Saccharomyces cerevisiae (strains FY833 and BY4741).  Transcriptional analysis of genes that play a role in cell cycle was conducted by growing cells on YPDAde broth medium containing 1% (w/v) noni fruit extract, and then subjected using quantitative real-time polymerase chain reaction (RT-PCR).  Transcriptional level of genes CDC6 (Cell Division Cycle-6), CDC20 (Cell Division Cycle-20), FAR1 (Factor ARrest-1), FUS3 (FUSsion-3), SIC1 (Substrate/Subunit Inhibitor of Cyclin-dependent protein kinase-1), WHI5 (WHIskey-5), YOX1 (Yeast homeobOX-1) and YHP1 (Yeast Homeo-Protein-1) increased, oppositely genes expression of DBF4 (DumbBell Forming), MCM1 (Mini Chromosome Maintenance-1) and TAH11 (Topo-A Hypersensitive-11) decreased, while the expression level of genes CDC7 (Cell Division Cycle-7), MBP1 (MIul-box Binding Protein-1) and SWI6 (SWItching deficient-6) relatively unchanged. These results indicated that gene expression changes might associate with anti-proliferative effect from noni fruit extract. These gene expressions changes lead to the growth inhibition of S.cerevisiae cell because of cell cycle defect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here