
Effect of ‘loss of function’ mutation in <i> SER1 </i> in wine yeast: fermentation outcomes in co-inoculation with non-<i>Saccharomyces </i>
Author(s) -
Tom A Lang,
M. Walker,
Paul K. Boss,
Vladimir Jiranek
Publication year - 2022
Publication title -
oeno one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.516
H-Index - 13
ISSN - 2494-1271
DOI - 10.20870/oeno-one.2022.56.2.4908
Subject(s) - fermentation , saccharomyces cerevisiae , yeast , wine , yeast in winemaking , saccharomyces , inoculation , malolactic fermentation , biology , food science , fermentation in winemaking , biochemistry , chemistry , bacteria , horticulture , lactic acid , genetics
In wine fermentation, improved wine complexity and sensorial properties can arise from the use of non-Saccharomyces yeast. Generally less alcohol tolerant, such strains often do not finish fermentation, therefore requiring a second inoculation with the more robust Saccharomyces cerevisiae, usually added on Day 3. This sequential approach affords non-Saccharomyces time to make an impact before being overtaken by S. cerevisiae. However, two inoculations are inconvenient; therefore the identification of a slow growing S. cerevisiae strain that can be used in a single co-inoculation with the non-Saccharomyces yeast is highly attractive. In this study we investigated the use of the naturally occurring ‘loss of function’ SER1 variant, identified in a Sake yeast, for the purposes of carrying out co-inoculated wine fermentations. The SER1-232(G > C; G78R) change was introduced into the commonly used wine strain, EC1118, via CRISPR/Cas9 editing. In a chemically defined grape juice medium, the SER1(G78R) mutant grew and fermented more slowly and increased acetic acid, succinic acid and glycerol concentrations. Simultaneous inoculation with the slower-growing mutant with a Metschnikowia pulcherrima or Lachancea thermotolerans strain in sterile Sauvignon blanc juice resulted in differences in sensorial compounds, most likely derived from the presence of non-Saccharomyces yeasts. The EC1118 SER1 (G78R) mutant completed fermentation with M. pulcherrima, MP2, and in fact improved the viability of MP2 compared to when it was used as a monoculture. The SER1 (G78R) mutant also promoted both the growth of the SO2-sensitive L. thermotolerans strain, Viniflora® Concerto™, in a juice high in SO2 and its subsequent dominance during fermentation. In co-fermentations with wild-type EC1118, the Concerto™ population was substantially reduced with no significant changes in wine properties. This research adds to our understanding of the use of a novel slow-growing S. cerevisiae yeast in wine fermentations co-inoculated with non-Saccharomyces strains.