z-logo
open-access-imgOpen Access
ІДЕНТИФІКАЦІЯ КОРИСТУВАЧІВ ПІДСИСТЕМИ РОЗПІЗНАВАННЯ НА ОСНОВІ СІТКІВКИ ОКА
Author(s) -
Л. Добровська,
А. А. Руденко
Publication year - 2021
Publication title -
bìomedična ìnženerìâ ì tehnologìâ
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2707-8434
pISSN - 2617-8974
DOI - 10.20535/2617-8974.2021.6.246909
Subject(s) - political science
Забезпечення біометричної безпеки має важливе значення в більшості сценаріїв перевірки справжності користувача та його ідентифікації. Розпізнавання, засноване на зразках райдужної оболонки, є важливою областю досліджень, покликаної забезпечити надійну, просту і швидку підсистему ідентифікації користувачів системи, яка використовує камеру (її можна використовувати у будь-якій системі, яка має механізм авторизації, де необхідна гарантія підвищеної безпеки). Мета роботи полягає у встановленні основних етапів алгоритму ідентифікації (класифікації) користувачів системи на основі обробки зображення сітківки ока із зіницею. Алгоритм розпізнавання райдужної оболонки ока для реєстрації користувачів системи включає такі етапи - попередня обробка зображення: зображення проходить різні фільтри (серед них фільтр Гауса та низько-частотні фільтри, гістограмні перетворення); - препроцессінг: 1) локалізація внутрішніх і зовнішніх меж області райдужної оболонки ока з використанням генетичного алгоритму; 2) нормалізація зображення, 3) виокремлення значущої інформації; - класифікація (або зіставлення із елементами БД) - виконана на основі двошарового персептрону (ДП). Для оцінки алгоритмів розпізнавання райдужної оболонки використано базу даних оцифрованих 100 зображень очей у відтінках сірого від 50 різних людей (класів). Експерименти проводилися у два етапи: 1) сегментація і 2) розпізнавання райдужної оболонки. На першому етапі для локалізації райдужних оболонок застосовується алгоритм прямокутної області. На другому етапі виконується класифікація малюнка райдужної оболонки за допомогою мережі. Сформовані множини навчання й тестування (відповідно 60 зображень очей від 30 різних людей; 40 зображень очей від 20 різних людей). Виявлені райдужки для класифікації після нормалізації та посилення масштабуються за допомогою усереднення. Це допомагає зменшити розмір мережі. Потім зображення подаються матрицями, які є вхідним сигналом для мережі. Виходами ДП є класи візерунків райдужки. Для класифікації райдужної оболонки використовується алгоритм нейронного навчання. Точність розпізнавання на множині навчання становила 95,25%; на множині тестування - 89%. Ключові слова - біометрія, розпізнавання райдужної оболонки ока, нейронна мережа

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here