z-logo
open-access-imgOpen Access
Гібридний метод обробки зображень на конволюційних нейронних мережах
Author(s) -
М. Федоряка,
K. Мелкумян
Publication year - 2021
Publication title -
adaptivnì sistemi avtomatičnogo upravlìnnâ/adaptivni sistemi avtomatičnogo upravlinnâ
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2522-9575
pISSN - 1560-8956
DOI - 10.20535/1560-8956.38.2021.233198
Subject(s) - unsharp masking , computer science , artificial intelligence , image enhancement , image (mathematics)
Стаття присвячена опису моделі конволюційної нейронної мережі для покращення роздільної здатності зображень на мобільних пристроях. В наш час мобільна фотографія стає все більш і більш популярною. Багато людей вибирають у якості основного пристрою для створення фото свій смартфон, оскільки це значно зручніше, швидше та дешевше за спеціалізовану камеру. Нажаль, висока роздільна здатність і якість фото доступна лише покупцям дорогих смартфонів. Саме тому актуальною є проблема покращення роздільної здатності та чіткості фотографій є неймовірно актуальною. Традиційні алгоритми без використання машинного навчання демонструють непогані результати і не потребують великого обсягу часу, потрібного на підбір наборів даних, що необхідні для тренування нейронної мережі, та, власне, на сам процес тренування. Проте, іх ефективність та якість результату значно гірша ніж у підходів з використанням нейронних мереж. Саме тому пропонується застосувати гібридний метод обробки зображень, що базується на конволюційних нейронних мережах. Структура мережі відрізняється від класичних підходів комбінацією обробки нейронною мережею та одним з більш традиційних алгоритмів обробки зображень. Запропонавана системавикористовує конволюційні нейронні мережі замість традиційних генеративних змагальних мереж. Запропонована архітектура мережі використовує автокодувальник, який вчиться на різких зображеннях шляхом вилучення ознак. Після навчання вихідне зображення пропускається через автокодувальник. Після видалення шумів та застосування корекцій, декодер створює з цих даних необхідне різке зображення. Після обробки нейронною мережею, застосовується алгоритм Unsharp Masking з буфером глибини для покращення контрасту і яскравості результуючого зображення. У статті наведено перелік переваг використання вищезазначеної системи. Бібл. 5, іл. 1.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here