
Odd Harmonious Labeling of <em>P</em><sub>n</sub> ⊵ <em>C</em><sub>4 </sub>and <em>P</em><sub>n</sub> ⊵ <em>D</em><sub>2</sub>(<em>C</em><sub>4</sub>)
Author(s) -
Sabrina Shena Sarasvati,
Ikhsanul Halikin,
Kristiana Wijaya
Publication year - 2021
Publication title -
indonesian journal of combinatorics
Language(s) - English
Resource type - Journals
ISSN - 2541-2205
DOI - 10.19184/ijc.2021.5.2.5
Subject(s) - physics
A graph G with q edges is said to be odd harmonious if there exists an injection f : V ( G ) → ℤ 2q so that the induced function f *: E ( G )→ {1,3,...,2 q -1} defined by f *( uv )= f ( u )+ f ( v ) is a bijection. Here we show that graphs constructed by edge comb product of path P n and cycle on four vertices C 4 or shadow of cycle of order four D 2 ( C 4 ) are odd harmonious.