
Broader families of cordial graphs
Author(s) -
Christian Barrientos,
Sarah Minion
Publication year - 2021
Publication title -
indonesian journal of combinatorics
Language(s) - English
Resource type - Journals
ISSN - 2541-2205
DOI - 10.19184/ijc.2021.5.1.6
Subject(s) - combinatorics , mathematics , circulant matrix , graph , neighbourhood (mathematics) , discrete mathematics , subdivision , geography , archaeology , mathematical analysis
A binary labeling of the vertices of a graph G is cordial if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1, and the number of edges of weight 0 and the number of edges of weight 1 differ by at most 1. In this paper we present general results involving the cordiality of graphs that results of some well-known operations such as the join, the corona, the one-point union, the splitting graph, and the super subdivision. In addition we show a family of cordial circulant graphs.