z-logo
open-access-imgOpen Access
Modelo para la evaluación del riesgo crediticio para los clientes de las microfinancieras del Perú
Author(s) -
Eduardo Manuel Alarcón Morales,
Brian Javier Mora Ramos
Publication year - 2020
Language(s) - Spanish
Resource type - Dissertations/theses
DOI - 10.19083/tesis/650407
Subject(s) - humanities , philosophy
El riesgo crediticio es un problema que viene afectando a las microfinancieras desde su nacimiento debido a que existe una probabilidad de que el cliente no termine de pagar el préstamo llegando inclusive al cierre de alguna de estas instituciones. En el Perú, la totalidad de empresas financieras utilizan el índice de morosidad como un indicador para medir el porcentaje de créditos no pagados con respecto a la totalidad de colocaciones, siendo en las microfinancieras el doble de la banca regular. Por este motivo, en la presente investigación se diseña un modelo de predicción que permite una mejor toma de decisiones al momento de evaluar al prestatario, utilizando variables estándares y comunes, herramientas y algoritmos modernos que permitan una mejor evaluación de las variables con respecto a la información brindada. El resultado de la investigación muestra las variables y los porcentajes de predicción de pago con la información brindada por una microfinanciera aplicando el algoritmo de redes bayesianas. Para esto, este proyecto demostró la eficacia del modelo planteado como un medio para obtener una fuente fidedigna con respecto a la evaluación de los créditos de consumo de manera objetiva. El modelo cuenta con 5 etapas: 1. Los elementos de entrada; 2. El proceso de evaluación y el análisis; 3. Las regulaciones estandarizadas; 4. La arquitectura tecnológica; 5. Los elementos de salida. Como resultados se obtuve una predicción promedio de las prestatarios de un 63%; así mismo, se evaluaron otros factores del modelo como la sensibilidad y la especificidad que ayudaron a la construcción del mismo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here