
Recognition of arable soils from photographs obtained as part of crowdsourcing technologies
Author(s) -
E. Yu. Prudnikova,
I. Yu. Savin,
G. V. Vindeker
Publication year - 2022
Publication title -
bûlletenʹ počvennogo instituta imeni v.v. dokučaeva/bûlletenʹ počvennogo instituta im. v.v. dokučaeva
Language(s) - English
Resource type - Journals
eISSN - 2312-4202
pISSN - 0136-1694
DOI - 10.19047/0136-1694-2022-111-77-96
Subject(s) - spectroradiometer , soil water , rgb color model , environmental science , crowdsourcing , remote sensing , arable land , soil classification , soil test , computer science , artificial intelligence , soil science , reflectivity , geography , physics , archaeology , world wide web , optics , agriculture