
Synthesis, Characterization And Electrolytic Behavior Of Cadmium(II) Complexes Of 5,7,7,12,14,14- Hexamethyl-1,4,8,11-Tetraazacyclotetradeca-4,11- Diene And Isomers Of Its Saturated Analogue
Author(s) -
Foni B. Biswas,
Tapashi G. Roy,
Saswata Rabi,
Mohammad K. Islam
Publication year - 2016
Publication title -
european scientific journal
Language(s) - English
Resource type - Journals
eISSN - 1857-7881
pISSN - 1857-7431
DOI - 10.19044/esj.2016.v12n12p186
Subject(s) - chemistry , ligand (biochemistry) , molar conductivity , square pyramidal molecular geometry , acetone , diene , substitution reaction , octahedron , melting point , condensation reaction , medicinal chemistry , stereochemistry , crystallography , inorganic chemistry , crystal structure , elemental analysis , organic chemistry , catalysis , biochemistry , natural rubber , receptor
Condensation of ethylendiamine with acetone in the presence of quantitative amount of perchloric acid, yielded the ligand 5,7,7,12,14,14- hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene dihydroperchlorate (denoted by L.2HClO4). The ligand L.2HClO4 on reduction with NaBH4, yielded an isomeric mixture of saturated macrocycles, the Me6[14]anes, which were resolved into two distinct C-chiral isomers (denoted by ‘tet-a’ and ‘tet-b’). Interaction of ligands L.2HClO4, ‘tet-a’ and ‘tet-b’ with salts CdI2, Cd(NO3)2.4H2O, CdCl2.2H2O and Cd(ClO4)2.6H2O produced different five coordinated square pyramidal and six coordinated octahedral cdmium(II) complexes. Among them the complexes, cis-[Cd(teta)( NO3)](NO3) and cis-[Cd(tet-b)(NO3)](NO3) underwent axial ligand substitution reaction with KCNS; whereas complex [Cd(tet-a)I2] underwent axial ligand substitution reaction and complex [CdLI](ClO4) underwent simultaneous ligand substitution and addition reaction with NaNO2. Characterization of all the complexes were carried out on the basis of elemental analysis; FT-IR, UV-Vis. and 1H-NMR spectroscopy; melting point determination as well as by magnetic moment and conductivity measurements. Molar conductivity measurment of the complexes reavealed that they show different electrolytic behavior in different solvents.