z-logo
Premium
The Biomechanical Analysis of Relative Position Between Implant and Alveolar Bone: Finite Element Method
Author(s) -
Huang ChengChun,
Lan TingHsun,
Lee HueyEr,
Wang ChauHsiang
Publication year - 2011
Publication title -
journal of periodontology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.036
H-Index - 156
eISSN - 1943-3670
pISSN - 0022-3492
DOI - 10.1902/jop.2010.100388
Subject(s) - implant , cortical bone , abutment , dental alveolus , crest , alveolar crest , orthodontics , dentistry , materials science , biomedical engineering , medicine , anatomy , surgery , structural engineering , engineering , physics , quantum mechanics
Background: The purpose of this study is to analyze biomechanical interactions in the alveolar bone surrounding implants with smaller‐diameter abutments by changing position of the fixture–abutment interface, loading direction, and thickness of cortical bone using the finite element method. Methods: Twenty different finite element models including four types of cortical bone thickness (0.5, 1, 1.5, and 2 mm) and five implant positions relative to bone crest (subcrestal 1, implant shoulder 1 mm below bone crest; subcrestal 0.5, implant shoulder 0.5 mm below bone crest; at crestal implant shoulder even with bone crest; supracrestal 0.5, implant shoulder 0.5 mm above bone crest; and supracrestal 1, implant shoulder 1 mm above bone crest) were analyzed. All models were simulated under two different loading angles (0 and 45 degrees) relative to the long axis of the implant, respectively. The three factors of implant position, loading type, and thickness of cortical bone were computed for all models. Results: The results revealed that loading type and implant position were the main factors affecting the stress distribution in bone. The stress values of implants in the supracrestal 1 position were higher than all other implant positions. Additionally, compared with models under axial load, the stress values of models under off‐axis load increased significantly. Conclusions: Both loading type and implant position were crucial for stress distribution in bone. The supracrestal 1 implant position may not be ideal to avoid overloading the alveolar bone surrounding implants.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here