Premium
Clinical and Histologic Evaluation of a Granular Bovine Bone Biomaterial Used as an Adjunct to GTR With a Bioresorbable Bovine Pericardium Collagen Membrane in the Treatment of Intrabony Defects
Author(s) -
Stavropoulos Andreas,
Chiantella Giovanni,
Costa Dinu,
Steigmann Marius,
Windisch Péter,
Sculean Anton
Publication year - 2011
Publication title -
journal of periodontology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.036
H-Index - 156
eISSN - 1943-3670
pISSN - 0022-3492
DOI - 10.1902/jop.2010.100331
Subject(s) - biomaterial , medicine , pericardium , cementum , connective tissue , dentistry , periodontal fiber , bone healing , wound healing , biomedical engineering , surgery , pathology , dentin
Background: The aim of the present study is to evaluate the clinical and histologic healing of deep intrabony defects treated with guided tissue regeneration (GTR) with a collagen membrane from bovine pericardium and implantation of granular bovine bone biomaterial. Methods: Thirty patients with one deep, combined 1‐ and 2‐wall intrabony defect exhibiting a probing depth ≥6 mm and an associated intrabony defect ≥3 mm were treated with GTR with a bioresorbable collagen membrane from bovine pericardium and adjunct implantation of a granular bovine bone biomaterial. The clinical results were evaluated 1 and 3 years after surgery. In addition, five teeth fulfilling the inclusion criteria but scheduled for extraction because of advanced periodontitis or restorative considerations were treated similarly and then extracted along with a portion of their surrounding periodontal tissues for histologic evaluation 6 months after surgery. Results: Healing was uneventful in all patients. Significant clinical improvements were observed at 1 and 3 years postoperatively ( P <0.01; probing depth averaged 4.4 ± 1.6 and 4.7 ± 1.4 mm and clinical attachment level gain was 3.9 ± 1.4 and 3.5 ± 1.3 mm, respectively). The histologic evaluation revealed formation of new cellular cementum and new periodontal ligament in four of the five cases. In general, the xenograft particles seemed to be mostly embedded in connective tissue without any evidence of new bone formation. Conclusion: GTR treatment of intrabony defects with the collagen membrane from bovine pericardium and adjunct implantation of the new bovine bone biomaterial may result in significant clinical improvements that can be maintained over a period of 3 years, and regeneration of cementum and periodontal ligament, but without bone formation.