z-logo
Premium
Bacteriostatic Effects of Hyaluronic Acid
Author(s) -
Pirnazar Payman,
Wolinsky Larry,
Nachnani Sushma,
Haake Susan,
Pilloni Andrea,
Bernard George W.
Publication year - 1999
Publication title -
journal of periodontology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.036
H-Index - 156
eISSN - 1943-3670
pISSN - 0022-3492
DOI - 10.1902/jop.1999.70.4.370
Subject(s) - propionibacterium acnes , hyaluronic acid , staphylococcus aureus , microbiology and biotechnology , actinobacillus , propionibacterium , antibiotics , bacteria , recombinant dna , chemistry , biology , biochemistry , genetics , gene
Background: This investigation is one of a series of projects seeking to ascertain whether hyaluronic acid (HA) is therapeutically effective in tissue regeneration procedures. The rationale for these investigations is to test the hypothesis that HA can serve as a bioabsorbable carrier for other substrates as well as itself actively promote the regeneration of tissue. Methods: In this paper, we report on the bacteriostatic and bactericidal properties of 3 molecular weight formulations of recombinant HA (low, 141 kD; medium, 757 kD; and high, 1,300 kD) on selected oral and non‐oral microorganisms in the planktonic phase. Three concentrations of each HA formulation were screened, 0.5, 1.0, and 2.0 mg/ml, using a standard broth culture assay. Results: Recombinant HA exerted varied bacteriostatic effects on all the bacterial strains tested depending on its molecular weight (MW) and concentration. The high concentrations of the medium MW HA had the greatest bacteriostatic effect, particularly on the Actinobacillus actinomycetemcomitans, Prevotella oris, Staphylococcus aureus, and Propionibacterium acnes strains. The 1.0 mg/ml concentration of high MW HA had the greatest overall bacteriostatic effect, inhibiting the growth of all 6 bacterial strains tested. Among the bacterial strains studied, HA was found to have no bactericidal effects, regardless of concentration or molecular weight. Conclusions: The results of this study suggest that HA in the MW range of 1,300 kD may prove beneficial in minimizing bacterial contamination of surgical wounds when used in guided tissue regeneration surgery. J Periodontol 1999;70:370‐374.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here