z-logo
Premium
A model predicting waterborne cadmium bioaccumulation in Gammarus pulex : The effects of dissolved organic ligands, calcium, and temperature
Author(s) -
Pellet Bastien,
Geffard Olivier,
Lacour Céline,
Kermoal Thomas,
GourlayFrancé Catherine,
TusseauVuillemin MarieHélène
Publication year - 2009
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1897/09-042.1
Subject(s) - gammarus pulex , bioaccumulation , cadmium , environmental chemistry , pulex , calcium , chemistry , amphipoda , ecology , biology , crustacean , daphnia , organic chemistry
Metal bioavailability depends on the presence of organic ligands in the water and on the concentrations of competitive cations. The present study aims at testing whether the diffusive gradient in thin films technique (DGT) could be used to take into account Cd speciation and its consequences on bioavailability in a bioaccumulation model and whether the influences of the Ca concentration and temperature also should be considered. Four kinetic experiments were conducted on Gammarus pulex : a calibration of Cd turnover rates and of the DGT lability in mineral water, a study of the influence of ethylenediaminetetraacetic acid (EDTA) and humic acids (HA) on uptake rates, and two experiments testing the influence of the Ca concentrations and temperature on Cd uptake clearance rates ( k u ). In mineral water, where Cd was considered fully labile, the k u was 0.46 L g −1 d −1 , and the depuration rate was 0.032 d −1 . The initial Cd influxes were lowered significantly by additions of 10 μg L −1 of EDTA or 10 mg L −1 of HA in the water but not at 5 mg L −1 HA, even if DGT measurements proved that Cd formed Cd–HA complexes in that treatment. Increasing Ca concentrations lowered k u values, and a competitive inhibition model between Ca and Cd fitted the data. A 30% enhancement of k u values was observed when the temperature was increased by 8°C, which appeared comparatively as a weak effect. Thus, taking into account the metal speciation and the influence of the Ca concentration should improve Cd bioaccumulation modeling in amphipods. In freshwater, where metal bioavailability is reduced by the presence of dissolved organic matter, forecasting Cd waterborne uptake using the labile concentrations should allow robust comparisons between laboratory and field studies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here