Premium
Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: Toxicokinetic confirmation
Author(s) -
Harwood Amanda D.,
You Jing,
Lydy Michael J.
Publication year - 2009
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1897/08-291.1
Subject(s) - toxicity , pyrethroid , chlorpyrifos , toxicokinetics , toxicology , chemistry , pesticide , permethrin , environmental chemistry , organophosphate , ecotoxicology , biology , organic chemistry , agronomy
Toxicity identification evaluation (TIE) methods can be used to identify toxic compounds in environmental samples using a variety of laboratory techniques. Whereas TIEs exist for nonpolar organics, relatively few methods are established for individual contaminant classes. Toxicity identification evaluations have shown pesticides to be the cause of toxicity in agricultural waters and effluents, and more recent studies have shown that the insecticide class of concern is pyrethroids. The primary objectives of the present study were to confirm a temperature TIE model and mechanistically explain these trends. This was achieved by comparing the relative toxicity and influence of temperature (13 vs 23°C) on Chironomus dilutus exposed to four insecticides, including two pyrethroids, an organophosphate, and an organochlorine, and then explaining these changes using toxicokinetics. A 10°C temperature decrease increased the toxicity of pyrethroids and DDT but decreased the toxicity of chlorpyrifos. The decrease in chlorpyrifos toxicity was driven primarily by the reduction of the formation of more toxic products via decreased biotransformation. The increase in DDT toxicity, in contrast, can be attributed to increased nerve sensitivity at 13 versus 23°C. The pyrethroid toxicity change, however, resulted from a combination of increased accumulation of parent compound and increased nerve sensitivity, exacerbating the toxicity of pyrethroids at 13°C. These trends also held true in sediment exposures with chlorpyrifos and permethrin, indicating that water‐only exposures were adequate substitutes for examining this mechanism.