z-logo
Premium
Model studies of corrosion‐induced copper runoff fate in soil
Author(s) -
Bertling Sofia,
Degryse Fien,
Wallinder Inger Odnevall,
Smolders Erik,
Leygraf Christofer
Publication year - 2006
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1897/05-026r.1
Subject(s) - surface runoff , copper , environmental science , soil water , topsoil , subsoil , environmental chemistry , infiltration (hvac) , total organic carbon , soil science , sorption , leaching (pedology) , dissolved organic carbon , hydrology (agriculture) , chemistry , geology , metallurgy , materials science , geotechnical engineering , ecology , organic chemistry , adsorption , composite material , biology
Abstract Laboratory experiments have been performed with 3‐cm soil columns simulating the fate of corrosion‐induced copper runoff in contact with soil. The investigation simulates approximately 30 years (assuming an infiltration surplus of 25 cm/year) of continuous percolation of copper containing runoff water of a concentration realistic at the immediate release situation (4.8 mg/L) into four soils representative of urban conditions. Two of the three investigated topsoils reached their breakthrough of copper within the simulated time, while the third topsoil did not show a breakthrough. The subsoil reached a breakthrough after approximately 10 years of simulated exposure. To simulate more realistic outdoor scenarios, the laboratory‐obtained breakthrough curves were modeled with Hydrus‐1D® using a Langmuir‐Freundlich model to describe copper sorption, the parameters of which were estimated from soil properties (pH, organic carbon content). The model predicts longer breakthrough times with increasing pH and organic content of the soil and with decreasing concentrations of copper and dissolved organic carbon in the runoff water. The time span for copper in runoff water (at concentrations of 0.01–10 mg/L) to reach a soil depth of 50 cm varied between 170 and more than 8,000 years for the predicted field scenarios.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here