Premium
Predicting the toxicity of chromium in sediments
Author(s) -
Berry Walter J.,
Boothman Warren S.,
Serbst Jonathan R.,
Edwards Philip A.
Publication year - 2004
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1897/03-599.1
Subject(s) - environmental chemistry , chromium , anoxic waters , sediment , sulfide , chemistry , toxicity , contamination , ecotoxicology , water pollution , pollution , geology , biology , ecology , paleontology , organic chemistry
Abstract Chromium exists in sediments in two oxidation states: Cr(III), which is relatively insoluble and nontoxic, and Cr(VI), which is much more soluble and toxic. Chromium(VI) is thermodynamically unstable in anoxic sediments, and acid‐volatile sulfide (AVS) is formed only in anoxic sediments; therefore sediments with measurable AVS concentrations should not contain toxic Cr(VI). If this hypothesis holds true, measuring AVS could form the basis for a theoretically based guideline for Cr in sediments. Ten‐day water‐only and spiked sediment toxicity tests with the amphipod Ampelisca abdita were performed with Cr(VI) and Cr(III), along with sediments collected from a site contaminated with high concentrations of Cr. In sediments where AVS exceeded analytical detection limits, Cr concentrations in interstitial water were very low (<100 μg/L) and no significant toxicity to A. abdita was observed. In sediments in which AVS was not significantly greater than zero, Cr concentrations in interstitial waters increased significantly, with greater than 90% of the Cr present as Cr(VI), and mortality of A. abdita was elevated. These results demonstrate that measurements of AVS and interstitial water chromium can be useful in predicting the absence of acute effects from Cr contamination in sediments.