Premium
Recommendations for the assessment of TNT toxicity in sediment
Author(s) -
Conder Jason M.,
La Point Thomas W.,
Steevens Jeffery A.,
Lotufo Guilherme R.
Publication year - 2004
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1897/03-137
Subject(s) - tubifex tubifex , environmental chemistry , toxicity , sediment , toxicant , ecotoxicology , ecotoxicity , degradation (telecommunications) , benthic zone , chemistry , dry weight , environmental science , biology , ecology , paleontology , telecommunications , botany , organic chemistry , computer science
Previous investigations of the ecotoxicity of TNT in spiked sediments noted the rapid degradation and disappearance of the toxicant, yet little is understood regarding the effects of this process on toxicity and subsequent derivation of toxicity reference values. We conducted environmental fate studies and 28‐d sediment toxicity tests with benthic oligochaete worms ( Tubifex tubifex ) with sediments spiked at three different TNT concentrations (440, 1,409, and 4,403 nmol/g dry wt) aged for 1, 8, and 29 d. Because of rapid degradation of TNT, disappearance of degradation products, and partitioning to overlying water, only 25 to 40% of the added nitroaromatic mass balance was associated with sediment immediately after spiking. Lethal toxicity decreased with aging time and was best described by measured sediment nitroaromatic concentrations (sum of TNT and degradation products) at the beginning of exposure, with a median lethal concentration of nitroaromatic compounds of 184 nmol/g dry weight. To accurately describe the ephemeral exposure doses of TNT and its degradation products during toxicity tests with spiked sediments, we suggest that sediments should be aged at least 8 to 14 d after spiking, exposure should be based on measured sediment concentrations or chemical measures of availability, exchange of overlying water should be avoided or minimized, and short‐term toxicity tests should be considered.