z-logo
Premium
Effects of pulp mill effluent on benthic assemblages in mesocosms along the Saint John River, Canada
Author(s) -
Culp Joseph M.,
Cash Kevin J.,
Glozier Nancy E.,
Brua Robert B.
Publication year - 2003
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1897/02-354
Subject(s) - periphyton , benthic zone , effluent , mesocosm , trophic level , ecology , paper mill , invertebrate , biology , biomass (ecology) , environmental science , nutrient , environmental engineering
We used mesocosms toexamine the impact of different concentrations of pulp mill effluent (PME) on structural and functional endpoints of a benthic assemblage in the Saint John River (NB, Canada) during 1999 and 2000. Previous studies on this effluent's effects produced conflicting results, with field surveys suggesting a pattern of mild nutrient enrichment, while laboratory toxicity tests linked effluent exposure to moderate contaminant effects. Experimental treatments included three concentrations of sulfite pulp mill effluent (0, 5, 10% v/v PME). Endpoints for the assessment included algal biomass and taxonomic composition, benthic invertebrate abundance and composition, and insect emergence. Low concentrations of PME increased periphyton biomass and caused changes in community structure within the diatom‐dominated community. Pulp mill effluent addition had little effect on several structural endpoints measured for benthic invertebrates, including abundance and taxonomic richness, but significantly changed community composition. For both periphyton and benthic invertebrates, community composition endpoints were more sensitive indicators of PME exposure. Insect emergence was a highly relevant functional endpoint. When benthic and emerged insects were combined, total abundance increased with PME addition. Results from two trophic levels, which provided multiple lines of evidence, indicated that the main impact of these PME concentrations is nutrient enrichment rather than effluent toxicity. Our findings also suggest that benthic invertebrate and periphyton assemblages, algal biomass production, and insect emergence are sensitive response measures. Future studies may confirm this observation. The consideration of both functional and structural endpoints at different trophic levels can greatly improve our understanding the effects of discharges to rivers. Such an understanding could not have been obtained using standard assessment techniques and illustrates the value of mesocosms and the benthic community assemblage approach in environmental assessment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here