z-logo
Premium
Kelp canopy facilitates understory algal assemblage via competitive release during early stages of secondary succession
Author(s) -
Benes Kylla M.,
Carpenter Robert C.
Publication year - 2015
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1890/14-0076.1
Subject(s) - understory , kelp , ecology , kelp forest , biology , propagule , foundation species , ecological succession , canopy , algae , ecosystem , interspecific competition , competition (biology)
Kelps are conspicuous foundation species in marine ecosystems that alter the composition of understory algal assemblages. While this may be due to changes in the competitive interactions between algal species, how kelp canopies mediate propagule supply and establishment success of understory algae is not well known. In Southern California, USA, Eisenia arborea forms dense kelp canopies in shallow subtidal environments and is associated with an understory dominated by red algal species. In canopy‐free areas, however, the algal assemblage is comprised of mostly brown algal species. We used a combination of mensurative and manipulative experiments to test whether Eisenia facilitates the understory assemblage by reducing competition between these different types of algae by changes in biotic interactions and/or recruitment. Our results show Eisenia facilitates a red algal assemblage via inhibition of brown algal settlement into the canopy zone, allowing recruitment to occur by vegetative means rather than establishment of new individuals. In the canopy‐free zone, however, high settlement and recruitment rates suggest competitive interactions shape the community there. These results demonstrate that foundation species alter the distribution and abundance of associated organisms by affecting not only interspecific interactions but also propagule supply and recruitment limitation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here