z-logo
Premium
Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest
Author(s) -
Ledo Alicia,
Schnitzer Stefan A.
Publication year - 2014
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1890/13-1775.1
Subject(s) - liana , ecology , disturbance (geology) , biology , habitat , panama , intermediate disturbance hypothesis , species diversity , paleontology
Negative density dependence (NDD) and habitat specialization have received strong empirical support as mechanisms that explain tree species diversity maintenance and distribution in tropical forests. In contrast, disturbance appears to play only a minor role. Previous studies have rarely examined the relative strengths of these diversity maintenance mechanisms concurrently, and few studies have included plant groups other than trees. Here we used a large, spatially explicit data set from Barro Colorado Island, Panama (BCI) to test whether liana and tree species distribution patterns are most consistent with NDD, habitat specialization, or disturbance. We found compelling evidence that trees responded to habitat specialization and NDD; however, only disturbance explained the distribution of the majority of liana species and maintained liana diversity. Lianas appear to respond to disturbance with high vegetative (clonal) reproduction, and liana species' ability to produce clonal stems following disturbance results in a clumped spatial distribution. Thus, clonal reproduction following disturbance explains local liana spatial distribution and diversity maintenance on BCI, whereas negative density dependence and habitat specialization, two prominent mechanisms contributing to tree species diversity and distribution, do not.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here