z-logo
Premium
DIRECT ESTIMATION OF ABOVEGROUND FOREST PRODUCTIVITY THROUGH HYPERSPECTRAL REMOTE SENSING OF CANOPY NITROGEN
Author(s) -
Smith Marie-Louise,
Ollinger Scott V.,
Martin Mary E.,
Aber John D.,
Hallett Richard A.,
Goodale Christine L.
Publication year - 2002
Publication title -
ecological applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.864
H-Index - 213
eISSN - 1939-5582
pISSN - 1051-0761
DOI - 10.1890/1051-0761(2002)012[1286:deoafp]2.0.co;2
Subject(s) - canopy , environmental science , productivity , ecosystem , hyperspectral imaging , primary production , ecology , terrestrial ecosystem , terrestrial plant , forest ecology , tree canopy , nitrogen , ecosystem ecology , range (aeronautics) , atmospheric sciences , remote sensing , biology , geography , chemistry , organic chemistry , economics , macroeconomics , materials science , geology , composite material
The concentration of nitrogen in foliage has been related to rates of net photosynthesis across a wide range of plant species and functional groups and thus represents a simple and biologically meaningful link between terrestrial cycles of carbon and nitrogen. Although foliar N is used by ecosystem models to predict rates of leaf‐level photosynthesis, it has rarely been examined as a direct scalar to stand‐level carbon gain. Establishment of such relationships would greatly simplify the nature of forest C and N linkages, enhancing our ability to derive estimates of forest productivity at landscape to regional scales. Here, we report on a highly predictive relationship between whole‐canopy nitrogen concentration and aboveground forest productivity in diverse forested stands of varying age and species composition across the 360 000‐ha White Mountain National Forest, New Hampshire, USA. We also demonstrate that hyperspectral remote sensing can be used to estimate foliar N concentration, and hence forest production across a large number of contiguous images. Together these data suggest that canopy‐level N concentration is an important correlate of productivity in these forested systems, and that imaging spectrometry of canopy N can provide direct estimates of forest productivity across large landscapes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here