z-logo
Premium
Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria
Author(s) -
Warren Dan L.,
Seifert Stephanie N.
Publication year - 2011
Publication title -
ecological applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.864
H-Index - 213
eISSN - 1939-5582
pISSN - 1051-0761
DOI - 10.1890/10-1171.1
Subject(s) - computer science , regularization (linguistics) , environmental niche modelling , model selection , information criteria , niche , transferability , ecology , machine learning , data mining , econometrics , ecological niche , artificial intelligence , mathematics , habitat , biology , logit
Maxent, one of the most commonly used methods for inferring species distributions and environmental tolerances from occurrence data, allows users to fit models of arbitrary complexity. Model complexity is typically constrained via a process known as L 1 regularization, but at present little guidance is available for setting the appropriate level of regularization, and the effects of inappropriately complex or simple models are largely unknown. In this study, we demonstrate the use of information criterion approaches to setting regularization in Maxent, and we compare models selected using information criteria to models selected using other criteria that are common in the literature. We evaluate model performance using occurrence data generated from a known “true” initial Maxent model, using several different metrics for model quality and transferability. We demonstrate that models that are inappropriately complex or inappropriately simple show reduced ability to infer habitat quality, reduced ability to infer the relative importance of variables in constraining species' distributions, and reduced transferability to other time periods. We also demonstrate that information criteria may offer significant advantages over the methods commonly used in the literature.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here