Premium
Stochastic development in biologically structured population models
Author(s) -
de Valpine Perry
Publication year - 2009
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1890/08-0703.1
Subject(s) - population , vital rates , population model , stochastic modelling , population growth , econometrics , computer science , ecology , mathematics , statistics , biology , demography , sociology
Variation in organismal development is ubiquitous in nature but omitted from most age‐ and stage‐structured population models. I give a general approach for formulating and analyzing its role in density‐independent population models using the framework of integral projection models. The approach allows flexible assumptions, including correlated development times among multiple life stages. I give a new Monte Carlo numerical integration approach to calculate long‐term growth rate, its sensitivities, stable age–stage distributions and reproductive value. This method requires only simulations of individual life schedules, rather than iteration of full population dynamics, and has practical and theoretical appeal because it ties easily implemented simulations to numerical solution of demographic equations. I show that stochastic development is demographically important using two examples. For a desert cactus, many stochastic development models, with independent or correlated stage durations, can generate the same stable stage distribution (SSD) as the real data, but stable age‐within‐stage distributions and sensitivities of growth rate to demographic rates differ greatly among stochastic development scenarios. For Mediterranean fruit flies, empirical variation in maturation time has a large impact on population growth. The systematic model formulation and analysis approach given here should make consideration of variable development models widely accessible and readily extendible.