Premium
Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams
Author(s) -
Lorion Christopher M.,
Kennedy Brian P.
Publication year - 2009
Publication title -
ecological applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.864
H-Index - 213
eISSN - 1939-5582
pISSN - 1051-0761
DOI - 10.1890/08-0050.1
Subject(s) - riparian zone , environmental science , riparian forest , deforestation (computer science) , ecology , riparian buffer , streams , ecosystem , species richness , pasture , biomass (ecology) , habitat , biology , computer network , computer science , programming language
Riparian forest buffers may play a critical role in moderating the impacts of deforestation on tropical stream ecosystems, but very few studies have examined the ecological effects of riparian buffers in the tropics. To test the hypothesis that riparian forest buffers can reduce the impacts of deforestation on tropical stream biota, we sampled fish assemblages in lowland headwater streams in southeastern Costa Rica representing three different treatments: (1) forested reference stream reaches, (2) stream reaches adjacent to pasture with a riparian forest buffer averaging at least 15 m in width on each bank, and (3) stream reaches adjacent to pasture without a riparian forest buffer. Land cover upstream from the study reaches was dominated by forest at all of the sites, allowing us to isolate the reach‐scale effects of the three study treatments. Fish density was significantly higher in pasture reaches than in forest and forest buffer reaches, mostly due to an increase in herbivore‐detritivores, but fish biomass did not differ among reach types. Fish species richness was also higher in pasture reaches than in forested reference reaches, while forest buffer reaches were intermediate. Overall, the taxonomic and trophic structure of fish assemblages in forest and forest buffer reaches was very similar, while assemblages in pasture reaches were quite distinct. These patterns were persistent across three sampling periods during our 15‐month study. Differences in stream ecosystem conditions between pasture reaches and forested sites, including higher stream temperatures, reduced fruit and seed inputs, and a trend toward increased periphyton abundance, appeared to favor fish species normally found in larger streams and facilitate a native invasion process. Forest buffer reaches, in contrast, had stream temperatures and allochthonous inputs more similar to forested streams. Our results illustrate the importance of riparian areas to stream ecosystem integrity in the tropics and provide support for Costa Rican legislation protecting riparian forests.