ABOVEGROUND AND BELOWGROUND EFFECTS OF SINGLE‐TREE REMOVALS IN NEW ZEALAND RAIN FOREST
Author(s) -
Wardle David A.,
Wiser Susan K.,
Allen Robert B.,
Doherty James E.,
Bonner Karen I.,
Williamson Wendy M.
Publication year - 2008
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1890/07-1543.1
Subject(s) - environmental science , ecology , ecosystem , humus , litter , understory , biomass (ecology) , vegetation (pathology) , agroforestry , biology , soil water , canopy , medicine , pathology
There has been considerable recent interest in how human‐induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single‐tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed‐species rain forests, single‐tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40‐year “removal experiment” had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor‐quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches containing high densities of large trees. Finally, this study emphasizes that deliberate extraction of a particular tree species from a forest can exert influences both above and below ground if the removed species has a different functional role than that of the other plant species present.