z-logo
Premium
OLD MODELS EXPLAIN NEW OBSERVATIONS OF BUTTERFLY MOVEMENT AT PATCH EDGES
Author(s) -
Crone Elizabeth E.,
Schultz Cheryl B.
Publication year - 2008
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1890/07-1173.1
Subject(s) - butterfly , movement (music) , ecology , habitat , geography , biology , physics , acoustics
Understanding movement in heterogeneous environments is central to predicting how landscape changes affect animal populations. Several recent studies point out an intriguing and distinctive looping behavior by butterflies at habitat patch edges and hypothesize that this behavior requires a new framework for analyzing animal movement. We show that this looping behavior could be caused by a longstanding movement model, biased correlated random walk, with bias toward habitat patches. The ability of this longstanding model to explain recent observations reinforces the point that butterflies respond to habitat heterogeneity and do not move randomly through heterogeneous environments. We discuss the implications of different movement models for predicting butterfly responses to landscape change, and our rationale for retaining longstanding movement models, rather than developing new modeling frameworks for looping behavior at patch edges.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here