Premium
HYDROLOGIC REGIME AND HERBIVORY STABILIZE AN ALTERNATIVE STATE IN YELLOWSTONE NATIONAL PARK
Author(s) -
Wolf Evan C.,
Cooper David J.,
Hobbs N. Thompson
Publication year - 2007
Publication title -
ecological applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.864
H-Index - 213
eISSN - 1939-5582
pISSN - 1051-0761
DOI - 10.1890/06-2042.1
Subject(s) - willow , floodplain , beaver , ecology , riparian zone , alluvium , national park , population , environmental science , habitat , geology , geography , biology , geomorphology , demography , sociology
A decline in the stature and abundance of willows during the 20th century occurred throughout the northern range of Yellowstone National Park, where riparian woody‐plant communities are key components in multiple‐trophic‐level interactions. The potential causes of willow decline include climate change, increased elk browsing coincident with the loss of an apex predator, the gray wolf, and an absence of habitat engineering by beavers. The goal of this study was to determine the spatial and temporal patterns of willow establishment through the 20th century and to identify causal processes. Sampled willows established from 1917 to 1999 and contained far fewer young individuals than was predicted from a modeled stable willow population, indicating reduced establishment during recent decades. Two hydrologically distinct willow establishment environments were identified: fine‐grained beaver pond sediments and coarse‐grained alluvium. Willows established on beaver pond sediment earlier in time, higher on floodplain surfaces, and farther from the current stream channel than did willows on alluvial sediment. Significant linear declines from the 1940s to the 1990s in alluvial willow establishment elevation and lateral distance from the stream channel resulted in a much reduced area of alluvial willow establishment. Willow establishment was not well correlated with climate‐driven hydrologic variables, but the trends were consistent with the effects of stream channel incision initiated in ca. 1950, 20–30 years after beaver dam abandonment. Radiocarbon dates and floodplain stratigraphy indicate that stream incision of the present magnitude may be unprecedented in the past two millennia. We propose that hydrologic changes, stemming from competitive exclusion of beaver by elk overbrowsing, caused the landscape to transition from a historical beaver‐pond and willow‐mosaic state to its current alternative stable state where active beaver dams and many willow stands are absent. Because of hydrologic changes in streams, a rapid return to the historical state may not occur by reduction of elk browsing alone. Management intervention to restore the historical hydrologic regime may be necessary to recover willows and beavers across the landscape.