z-logo
Premium
WOODY PLANT RICHNESS AND NDVI RESPONSE TO DROUGHT EVENTS IN CATALONIAN (NORTHEASTERN SPAIN) FORESTS
Author(s) -
Lloret F.,
Lobo A.,
Estevan H.,
Maisongrande P.,
Vayreda J.,
Terradas J.
Publication year - 2007
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1890/06-1195.1
Subject(s) - species richness , normalized difference vegetation index , evergreen , temperate forest , mediterranean climate , ecology , temperate rainforest , canopy , geography , temperate climate , ecosystem , environmental science , climate change , physical geography , biology
The role of species diversity on ecosystem resistance in the face of strong environmental fluctuations has been addressed from both theoretical and experimental viewpoints to reveal a variety of positive and negative relationships. Here we explore empirically the relationship between the richness of forest woody species and canopy resistance to extreme drought episodes. We compare richness data from an extensive forest inventory to a temporal series of satellite imagery that estimated drought impact on forest canopy as NDVI (normalized difference vegetation index) anomalies of the dry summer in 2003 in relation to records of previous years. We considered five different types of forests that are representative of the main climatic and altitudinal gradients of the region, ranging from lowland Mediterranean to mountain boreal‐temperate climates. The observed relationship differed among forest types and interacted with the climate, summarised by the Thorntwaite index. In Mediterranean Pinus halepensis forests, NDVI decreased during the drought. This decrease was stronger in forests with lower richness. In Mediterranean evergreen forests of Quercus ilex , drought did not result in an overall NDVI loss, but lower NDVI values were observed in drier localities with lower richness, and in more moist localities with higher number of species. In mountain Pinus sylvestris forests NDVI decreased, mostly due to the drought impact on drier localities, while no relation to species richness was observed. In moist Fagus sylvatica forests, NDVI only decreased in plots with high richness. No effect of drought was observed in the high mountain Pinus uncinata forests. Our results show that a shift on the diversity–stability relationship appears across the regional, climatic gradient. A positive relationship appears in drier localities, supporting a null model where the probability of finding a species able to cope with drier conditions increases with the number of species. However, in more moist localities we hypothesize that the proportion of drought‐sensitive species would increase in richer localities, due to a higher likelihood of co‐occurrence of species that share moist climatic requirements. The study points to the convenience of considering the causes of disturbance in relation to current environmental gradients and historical environmental constraints on the community.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here