z-logo
Premium
Sensitivity Of Ecological Models To Their Climate Drivers: Statistical Ensembles For Forcing
Author(s) -
Fuentes Montserrat,
Kittel Timothy G. F.,
Nychka Doug
Publication year - 2006
Publication title -
ecological applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.864
H-Index - 213
eISSN - 1939-5582
pISSN - 1051-0761
DOI - 10.1890/04-1157
Subject(s) - kriging , sensitivity (control systems) , forcing (mathematics) , field (mathematics) , climate change , propagation of uncertainty , bayesian probability , climate model , environmental science , ecology , computer science , climatology , statistics , mathematics , machine learning , geology , algorithm , electronic engineering , pure mathematics , engineering , biology
Global and regional numerical models for terrestrial ecosystem dynamics require fine spatial resolution and temporally complete historical climate fields as input variables. However, because climate observations are unevenly spaced and have incomplete records, such fields need to be estimated. In addition, uncertainty in these fields associated with their estimation are rarely assessed. Ecological models are usually driven with a geostatistical model's mean estimate (kriging) of these fields without accounting for this uncertainty, much less evaluating such errors in terms of their propagation in ecological simulations. We introduce a Bayesian statistical framework to model climate observations to create spatially uniform and temporally complete fields, taking into account correlation in time and space, spatial heterogeneity, lack of normality, and uncertainty about all these factors. A key benefit of the Bayesian model is that it generates uncertainty measures for the generated fields. To demonstrate this method, we reconstruct historical monthly precipitation fields (a driver for ecological models) on a fine resolution grid for a climatically heterogeneous region in the western United States. The main goal of this work is to evaluate the sensitivity of ecological models to the uncertainty associated with prediction of their climate drivers. To assess their numerical sensitivity to predicted input variables, we generate a set of ecological model simulations run using an ensemble of different versions of the reconstructed fields. We construct such an ensemble by sampling from the posterior predictive distribution of the climate field. We demonstrate that the estimated prediction error of the climate field can be very high. We evaluate the importance of such errors in ecological model experiments using an ensemble of historical precipitation time series in simulations of grassland biogeochemical dynamics with an ecological numerical model, Century. We show how uncertainty in predicted precipitation fields is propagated into ecological model results and that this propagation had different modes. Depending on output variable, the response of model dynamics to uncertainty in inputs ranged from uncertainty in outputs that matched that of inputs to those that were muted or that were biased, as well as uncertainty that was persistent in time after input errors dropped.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here