z-logo
Premium
SPATIAL ANALYSIS OF LANDSCAPES: CONCEPTS AND STATISTICS
Author(s) -
Wagner Helene H.,
Fortin Marie-Josée
Publication year - 2005
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1890/04-0914
Subject(s) - spatial analysis , spatial ecology , spatial dependence , spatial heterogeneity , ecology , spatial variability , common spatial pattern , spatial configuration , biological dispersal , spatial distribution , statistics , geography , mathematics , biology , population , distribution (mathematics) , mathematical analysis , demography , sociology
Species patchiness implies that nearby observations of species abundance tend to be similar or that individual conspecific organisms are more closely spaced than by random chance. This can be caused either by the positive spatial autocorrelation among the locations of individual organisms due to ecological spatial processes (e.g., species dispersal, competition for space and resources) or by spatial dependence due to (positive or negative) species responses to underlying environmental conditions. Both forms of spatial structure pose problems for statistical analysis, as spatial autocorrelation in the residuals violates the assumption of independent observations, while environmental heterogeneity restricts the comparability of replicates. In this paper, we discuss how spatial structure due to ecological spatial processes and spatial dependence affects spatial statistics, landscape metrics, and statistical modeling of the species–environment correlation. For instance, while spatial statistics can quantify spatial pattern due to an endogeneous spatial process, these methods are severely affected by landscape environmental heterogeneity. Therefore, statistical models of species response to the environment not only need to accommodate spatial structure, but need to distinguish between components due to exogeneous and endogeneous processes rather than discarding all spatial variance. To discriminate between different components of spatial structure, we suggest using (multivariate) spatial analysis of residuals or delineating the spatial realms of a stationary spatial process using boundary detection algorithms. We end by identifying conceptual and statistical challenges that need to be addressed for adequate spatial analysis of landscapes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here