Premium
THE IMPLICATIONS OF LUNG‐REGULATED BUOYANCY CONTROL FOR DIVE DEPTH AND DURATION
Author(s) -
Hays Graeme C.,
Metcalfe Julian D.,
Walne Anthony W.
Publication year - 2004
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1890/03-0251
Subject(s) - buoyancy , turtle (robot) , neutral buoyancy , volume (thermodynamics) , ecology , biology , oceanography , geology , fishery , mechanics , physics , quantum mechanics
Among air‐breathing divers, control of buoyancy through lung volume regulation may be most highly developed in marine turtles. In short, the turtle lung may serve a dual role as both an oxygen store and in buoyancy control. A simple model is developed to show that, for turtles diving up to the maximum depth at which they can still use their lungs to attain neutral buoyancy, the total oxygen store will increase greatly with dive depth, and hence a corresponding increase in dive duration is predicted. Time–depth recorders attached to free‐living green turtles ( Chelonia mydas ) at Ascension Island confirmed a marked increase in dive duration with depth, with the gradient of this relationship being >10 times that seen in diving birds and mammals. Consistent with the prediction that the lungs serve a dual role, we found that, when lead weights were added to some turtles to increase their specific gravity, the mean depth of dives decreased, but for dives to the same depth, weighted animals dived for longer. The depth distribution of green turtles seems to be generally constrained by the maximum depth at which they can still attain close to neutral buoyancy.