z-logo
Premium
MACROALGAL CANOPIES CONTRIBUTE TO EELGRASS ( ZOSTERA MARINA ) DECLINE IN TEMPERATE ESTUARINE ECOSYSTEMS
Author(s) -
Hauxwell Jennifer,
Cebrián Just,
Furlong Christopher,
Valiela Ivan
Publication year - 2001
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1890/0012-9658(2001)082[1007:mcctez]2.0.co;2
Subject(s) - zostera marina , estuary , seagrass , canopy , biomass (ecology) , environmental science , bay , zostera , population , ecology , exclosure , ecosystem , temperate climate , biology , oceanography , grazing , geology , demography , sociology
Loss of eelgrass ( Zostera marina ) habitat from temperate estuaries worldwide often coincides with increased macroalgal accumulations resulting from increased delivery of anthropogenic nitrogen. We conducted macroalgal enclosure/exclosure experiments during summer 1998 within eelgrass populations in two estuaries of Waquoit Bay, Massachusetts, USA, to evaluate how increased macroalgal biomass affects density, recruitment, growth rate, and production of eelgrass. One estuary featured a low nitrogen loading rate and sustained a relatively pristine eelgrass population with a 2 cm high macroalgal canopy. The other estuary had a sixfold higher nitrogen loading rate and a declining eelgrass population with a 9 cm high macroalgal canopy. Experimental units were 1 × 1 m plots of eelgrass fenced within 50 cm high plastic mesh that excluded or included macroalgae at canopy heights ranging from 0 to 25 cm. In both estuaries, rates of eelgrass loss increased, largely a result of decreased recruitment, and growth rates decreased (due to decreased rates of leaf appearance) with increasing macroalgal canopy height. Aboveground summer production in both estuaries decreased exponentially as macroalgal canopy heights increased. We conclude that macroalgal cover is a proximate cause for loss of eelgrass in the higher N estuary since, upon removal of macroalgae, we observed an increase in shoot density, a 55% increase in summer growth, and a 500% increase in summer aboveground net production. Based on summer growth data and density of shoots in our experimental plots the following spring, we suggest that the negative impacts of macroalgal canopies persist, but also that eelgrass recovery upon removal of macroalgae may be possible. To identify the mechanisms by which macroalgae potentially inhibit eelgrass production, we measured changes in nutrient and oxygen concentrations resulting from macroalgal canopies and estimated the relative importance of summer standing stocks of phytoplankton, epiphytes, and macroalgae to potential shading of eelgrass in both estuaries. We document both (1) unfavorable biogeochemical conditions (lowered redox conditions and potentially toxic concentrations of NH 4 + ) imposed by the presence of macroalgal canopies and (2) potential light limitation of eelgrass by standing stocks of producers in the higher N estuary, with estimates of light reduction via macroalgae numerically more important than light sequestration by phytoplankton and epiphytes for newly recruiting shoots. Increased macroalgal biomass associated with increased nitrogen loading to estuaries can lead to eelgrass disappearance, and we identify an approximate 9–12‐cm critical macroalgal canopy height at which eelgrass declines.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here