z-logo
Premium
Single‐layered multi‐color electrowetting display by using ink‐jet‐printing technology and fluid‐motion prediction with simulation
Author(s) -
Ku YunSheng,
Kuo ShuWei,
Huang YuSheng,
Chen ChingYao,
Lo KuoLong,
Cheng WeiYuan,
Shiu JyhWen
Publication year - 2011
Publication title -
journal of the society for information display
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 52
eISSN - 1938-3657
pISSN - 1071-0922
DOI - 10.1889/jsid19.7.488
Subject(s) - electrowetting , color gel , ntsc , electrode , inkwell , aperture (computer memory) , materials science , colored , voltage , computer science , optics , acoustics , optoelectronics , electrical engineering , composite material , engineering , physics , telecommunications , layer (electronics) , high definition television , quantum mechanics , dielectric , thin film transistor
— This paper describes a single‐layered multi‐color electrowetting display (EWD) by using ink‐jet‐printing (IJP) technology and comparing different pattern electrodes with the use of the numerical investigations of ANSYS FLUENT®. This work consists of two parts: the first describes the design of implementing a single‐layered multi‐color EWD and the second demonstrates the application of ANSYS FLUENT® simulation in different pattern electrodes settings on the proposed EWD. The single‐layered multi‐color EW device was evaluated by using various colored oils without adopting a color filter. The single‐layered multi‐color EWD at a driving voltage of 25 V can achieve a maximum aperture ratio and reflectivity of 80% and 38.5%, respectively. The colored saturation of R, G, B oils can increase to 50% (NTSC: 13.3–27.8%). In addition, a radiate electrode at the required viewable area condition of 85% and force 5 * F k , which results in ink stable contraction and a shorter response time of 50% (radiate vs. square), was proposed. The experimental results and simulation demonstrate that ink‐jet‐printing (IJP) technology along with the use of radiate electrodes can result in a single‐layered multi‐color EWD with a shorter response time.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom