Premium
Thin‐film barriers using transparent conducting oxides for organic light‐emitting diodes
Author(s) -
Lee Ho Nyeon,
Kim Hyung Jung,
Yoon Young Min
Publication year - 2009
Publication title -
journal of the society for information display
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 52
eISSN - 1938-3657
pISSN - 1071-0922
DOI - 10.1889/jsid17.9.739
Subject(s) - materials science , oled , indium tin oxide , amorphous solid , optoelectronics , thin film , sputtering , oxide , diode , chemical engineering , layer (electronics) , nanotechnology , metallurgy , chemistry , organic chemistry , engineering
— This study covers thin‐film barriers using inorganic barriers of transparent conducting oxides (TCOs) such as zinc oxide (ZnO) and indium tin oxide (ITO). The TCOs were fabricated using a sputtering method with a process gas of pure argon at room temperature. ITO showed better properties as a barrier than the ZnO and exhibited the electronic performance necessary to perform additional functions. The ITO has superior barrier performance because it has a lower crack density due to its partial amorphous phase. For organic/inorganic multilayer barriers, the organic underlayer decreased the water‐vapor transmission rate (WVTR) more than the organic upper layer, indicating that the planarization effect was important in reducing the WVTRs. The results of this organic/ITO multilayer barrier study are expected to be useful in finding a practical solution to OLED encapsulation.