Premium
Power savings and enhancement of gray‐scale capability of LCD TVs with an adaptive dimming technique
Author(s) -
Shiga Tomokazu,
Shimizukawa Sho,
Mikoshiba Shigeo
Publication year - 2008
Publication title -
journal of the society for information display
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 52
eISSN - 1938-3657
pISSN - 1071-0922
DOI - 10.1889/1.2841865
Subject(s) - backlight , luminance , computer science , liquid crystal display , grayscale , power consumption , pixel , computer vision , gamma correction , artificial intelligence , power (physics) , physics , image (mathematics) , quantum mechanics , operating system
— The luminance of a backlight unit for an LCD TV is adaptively and locally dimmed along with the input video signal in order to reduce the power consumption and also to improve the picture quality. By adopting the zero‐dimensional (0D), 1D, and 2D adaptive dimming techniques, a sample movie having 8.0% post‐gamma average picture levels (APL) could be displayed using 83%, 71%, and 50% of the original backlight power, respectively. For an adoption of the 2D dimming, an LED backlight is preferable. The adaptive‐dimming technique also allows the differential aging characteristics between the LED components and temperature dependence of color and luminance to be overcome. From simulations of a reduction in power consumption, it was found that 40 × 40 pixels is a unit of the local dimming, 30 frames for the sampling period, 24 dimming steps, and an equal‐signal‐step method for determining the dimming factor have been found to be appropriate. The gray‐scale capability of low‐luminance images can also be improved by dimming the backlight luminance and expanding the input signal. By using an LCD TV having an 8‐bit capability, an 11‐bit‐equivalent gray‐scale expression was experimentally proven.