Premium
Letter: Mechanisms for on/off currents in dual‐gate a‐Si:H thin‐film transistors using indium‐tin‐oxide top‐gate electrodes
Author(s) -
Liang ChungYu,
Gan FengYuan,
Yeh FonShan,
Chang TingChang
Publication year - 2007
Publication title -
journal of the society for information display
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 52
eISSN - 1938-3657
pISSN - 1071-0922
DOI - 10.1889/1.2813000
Subject(s) - materials science , optoelectronics , thin film transistor , gate oxide , transistor , subthreshold conduction , indium tin oxide , electrode , and gate , threshold voltage , logic gate , voltage , electrical engineering , nanotechnology , thin film , layer (electronics) , physics , engineering , quantum mechanics
— Two types of dual‐gate a‐Si:H TFTs were made with transparent indium‐tin‐oxide (ITO) top‐gate electrodes of different lengths to investigate the static characteristics of these devices. By changing the length of the ITO top gate, we found that the variations in the on‐currents of these dual‐gate TFTs with dual‐gate driving are due to the high resistance of the parasitic intrinsic a‐Si:H regions between the back electron channel and the source/drain contact. In the off‐state of the dual‐gate‐driven TFTs, the Poole‐Frenkel effect is also enhanced due to back‐channel hole accumulation in the vicinity of the source/drain contact. Furthermore, we observed for the first time that under illumination the dual‐gate‐driven a‐Si:H TFTs exhibit extremely low photo‐leakage currents, much lower than that of single‐gate‐driven TFTs in a certain range (reverse subthreshold region) of negative gate voltages. The high on/off current ratio under backside illumination makes dual‐gate TFTs suitable devices for use as switching elements in liquid‐crystal displays (LCDs) or for other applications.