z-logo
Premium
Characterizing crosstalk in anaglyphic stereoscopic images on LCD monitors and plasma displays
Author(s) -
Woods Andrew J.,
Yuen Ka Lun,
Karvinen Kai S.
Publication year - 2007
Publication title -
journal of the society for information display
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 52
eISSN - 1938-3657
pISSN - 1071-0922
DOI - 10.1889/1.2812989
Subject(s) - ghosting , stereoscopy , computer vision , computer science , artificial intelligence , liquid crystal display , crosstalk , computer graphics (images) , display device , stereo display , image quality , optics , physics , image (mathematics) , operating system
— In 1853, William Rollman developed the inexpensive and easy to use anaglyph method for displaying stereoscopic images. Although it can be used with nearly any type of full‐color display, the anaglyph method compromises the accuracy of color reproduction, and it often suffers from crosstalk (or ghosting) between the left‐ and right‐eye image channels. Crosstalk degrades the ability of the observer to fuse the stereoscopic image, and hence reduces the quality of the 3‐D image. Crosstalk is present in various levels with most stereoscopic displays; however, it is often particularly evident with anaglyphic 3‐D images. This paper summarizes the results of two projects that characterized the presence of anaglyphic crosstalk due to spectral issues on 13 LCD monitors, 14 plasma displays, and a CRT monitor when used with 25 different pairs of anaglyph 3‐D glasses. A mathematical model was used to predict the amount of crosstalk in anaglyphic 3‐D images when different combinations of displays and glasses are used, and therefore highlight displays, glasses, and combinations thereof which exhibit lower levels of crosstalk when displaying anaglyphic 3‐D images.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here