Premium
Polarization‐independent modulation for projection displays using small‐period LC polarization gratings
Author(s) -
Komanduri Ravi K.,
Jones W. Michael,
Oh Chulwoo,
Escuti Michael J.
Publication year - 2007
Publication title -
journal of the society for information display
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 52
eISSN - 1938-3657
pISSN - 1071-0922
DOI - 10.1889/1.2770860
Subject(s) - optics , grating , polarization (electrochemistry) , materials science , diffraction grating , diffraction efficiency , diffraction , schlieren , physics , optoelectronics , chemistry
— Progress in the use of liquid‐crystal polarization grating (LCPG) to modulate unpolarized (and polarized) light with a grating period as small as 6.3 μm is reported. Similar to LCPGs formed at larger periods (11 μm) reported previously, polarization‐independent switching, predominantly three diffraction orders, maximum contrast ratios of ∼100:1 for unpolarized broadband light, very low scattering, and diffraction efficiencies >98% continue to be observed. The smaller period led to an expected lower threshold voltage, even though the thickness was greater. Because the smaller grating period enables a brighter result from a Schlieren projection scheme for a microdisplay using the LCPG light valve, the inherent tradeoffs involved with both material and design parameters are discussed, and prospects for a polarization‐independent projection display are commented upon.