z-logo
open-access-imgOpen Access
ГОЛОМОРФНОЕ ПОГРУЖЕНИЕ КАК МЕТОД РАСЧЕТА УСТАНОВИВШИХСЯ РЕЖИМОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ И ОЦЕНКИ ИХ УСТОЙЧИВОСТИ
Author(s) -
Юсуп Ниязбекович Исаев,
Дмитрий Андреевич Кабалин,
Александр Александрович Филипас
Publication year - 2021
Publication title -
izvestiâ tomskogo politehničeskogo universiteta. inžiniring georesursov
Language(s) - Russian
Resource type - Journals
SCImago Journal Rank - 0.27
H-Index - 10
eISSN - 2500-1019
pISSN - 2413-1830
DOI - 10.18799/24131830/2021/2/3057
Subject(s) - business
Для эффективного решения задачи оперативно-диспетчерского управления режимами работы единой энергетической системы, ее отдельных энергосистем и энергорайонов, в частности,энергорайонов нефтедобычи, требуется выполнять расчеты установившихся режимов электрических сетей. Кроме того, наряду с расчетами установившихся режимов важными являются вопросы исследования устойчивости работы энергосети. Сходимость и скорость сходимости широко применяемых итерационных методов расчета установившихся режимов зависят от многих режимных и расчетных факторов, определяемых параметрами сети и режима, выбором исходных приближений, способом задания исходных данных. Поэтому разработки новых методов, позволяющих рассчитывать все установившиеся режимы,представляя.n значительный практический интерес. Одним из перспективных методовявляется метод голоморфного погружения. В данном методе неизвестные параметры узлов представляются в виде голоморфных функций, которые можно представить в виде степенных рядов, коэффициенты которых рассчитываются по рекуррентным выражениям и задача сводится к нахождению коэффициентов степенных рядов.В опубликованной ранее статье авторов приведено рассмотрение метода для схемы с нагрузочными узлами. Для полного корректного анализа режимов реальных энергосистем необходимо показать, как нужно вести расчет для генераторных узлов. В работе представленырекуррентные выражения для расчета неизвестных коэффициентов голоморфных функций неизвестных параметров системы уравнений установившегося режима для нагрузочных и генераторных узлов. Полученные выражения, в отличие от предложенных в работах других авторов, являются более общими. Показан принцип формирования матричного уравнения для нахождения неизвестных коэффициентов с разделением комплексных параметров на действительную и мнимую части.Предложен способ получения сходящихся степенных рядов искомых функций в отдельных случаях.На примере тестовой энергосистемы показано преимущество перед методом Ньютона–Рафсона. Рассматриваетсявопрос оценки существования решения системы уравнений установившегося режима для многоузловой сети на основе сигма-графика.Предложен подход к определению показателя запаса статической устойчивости энергосистемы на основе критерия Фабри. Цель: применить аналитический метод голоморфного погружения для расчета электрической схемы, содержащей нагрузочные и генераторные узлы;оценить влияние количества рассчитываемых коэффициентов степенных рядов на точность получаемого решения, а также рассмотреть способы повышения численной точности решения, рассмотреть вопрос оценки существования решения системы уравнений установившегося режимадля многоузловой сети на основе анализа степенных рядов. Методы: разложение Тейлора, аналитическое продолжение, аппроксимация Паде, решение алгебраических уравнений рекуррентным методом. Результаты. На примере схемы с плохообусловленной матрицей Якоби, в которой метод Ньютона–Рафсона не сходится с плоского старта, показано преимущество метода голоморфного погружения.Показано влияние количества членов степенных рядов на погрешность расчета. Для рассматриваемой схемы выполнена графическая оценка существования решения системы уравнений. Выводы. Для нагрузочных и генераторных узлов неизвестные параметры можно представить в виде голоморфных функций, которые можно записать в виде ряда Тейлора, коэффициенты которого рассчитываются по рекуррентным выражениям. Частичный учет шунтов на землю в диагональных элементах матрицы последовательных проводимостей позволяет получитьсходящиеся степенные ряды в отдельных случаях. Рассмотренный графический способ оценки возможности существования режима позволяет произвести примерную оценку. В отличие от классических итерационных методов для метода голоморфного погружения не нужно задавать начальное приближение.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here