z-logo
open-access-imgOpen Access
Variable Selection and Data Quality Challenges in Impact Assessments
Author(s) -
Monica Roman,
Liliana-Olivia Lucaciu
Publication year - 2021
Publication title -
postmodern openings
Language(s) - English
Resource type - Journals
eISSN - 2069-9387
pISSN - 2068-0236
DOI - 10.18662/po/12.3sup1/348
Subject(s) - computer science , data quality , quality (philosophy) , risk analysis (engineering) , key (lock) , data science , structuring , management science , process management , computer security , business , engineering , marketing , epistemology , finance , metric (unit) , philosophy
The research is focused on the role of two related key concepts, namely variables and data, in the impact evaluations of public projects. A difficult task of the evaluators and researchers is to select the appropriate variables to ensure the best model of reality and satisfy the evaluation methods' needs. Therefore, the paper aims to look at the current knowledge and discuss how variables and data could be best used to connect the evaluation models, the particularities of the intervention with the potential of the advanced quantitative assessment methods. The results emphasise that evaluations operate with data with different levels of granularity, as required by the intervention logic. Structuring data in clusters and categories, performing evaluability assessments are useful in assessing data quality and limitations and improving them. In line with the existing literature, we demonstrate that data accessibility is a key constraint and imposes adjustment of the desired evaluation model to a feasible one. While Big Data and Open Data systems significantly improved data quality in evaluations in recent years, blockchain, as a ledger technology with default features related to decentralisation and security, is expected to bring large benefits to evaluation. For evaluators and policymakers, blockchain potential is an area of further research looking for additional advantages that could enhance the use of quantitative methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here