z-logo
open-access-imgOpen Access
Viral oncomiR spreading between B and T cells is employed by Kaposi's sarcoma herpesvirus to induce non-cell-autonomous target gene regulation
Author(s) -
Nir Rainy,
Morad Zayoud,
Yoel Kloog,
Oded Rechavi,
Itamar Goldstein
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.9627
Subject(s) - oncomir , kaposi's sarcoma associated herpesvirus , biology , carcinogenesis , virology , jurkat cells , microrna , cancer research , virus , cancer , t cell , gene , genetics , immune system , herpesviridae , viral disease
The two human lymphotrophic γ-herpesviruses, Kaposi's sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV), are a recognized cause of human cancer, encoding multiple miRs that are major players in carcinogenesis. Previously, we discovered that EBV-encoded miRs transfer between infected B and T lymphocytes. To further explore the biological significance of the spreading of γ-herpesvirus-encoded miRs on carcinogenesis, we focused on KSHV-miR-K12-11 (miR-K12-11) that is unique in having an identical seed sequence with the oncomiR hsa-miR-155, implicated in B cell lymphomas development. Here, we show for the first time that miR-K12-11 transfers in vitro from KSHV-infected BCBL-1 and BC-1 lymphoma lines to T cells. The transferred miR-K12-11 is active in the adopting T cells and binds its canonical target, the 3'-UTR of BACH1. Importantly, we show that the transfer of miR-K12-11 from BCBL-1 to Jurkat cells correlates with inhibition of the innate type-I interferons response to viral dsRNAs downstream of IKKε, a validated miR-K12-11 target. Finally, we show that miR-K12-11 spreading is not reduced by blocking the classical ceramide-dependent exosome secretion pathway. In summary, we report for the first time that intercellular viral oncomiR spreading is an additional mechanism employed by KSHV to inhibit host anti-viral immunity and consequently promote oncogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here