z-logo
open-access-imgOpen Access
Autophagy-related cell death by pan-histone deacetylase inhibition in liver cancer
Author(s) -
Pietro Di Fazio,
Petra Waldegger,
Samir Jabari,
Susanne Lingelbach,
Roberta Montalbano,
Matthias Ocker,
Emily P. Slater,
Detlef K. Bartsch,
Romana Illig,
Daniel Neureiter,
TT Wissniowski
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.8585
Subject(s) - autophagy , medicine , programmed cell death , cancer , cancer research , apoptosis , biology , biochemistry
Autophagy is a homeostatic, catabolic degradation process and cell fate essential regulatory mechanism. Protracted autophagy triggers cell death; its aberrant function is responsible for several malignancies. Panobinostat, a potent pan-deacetylase inhibitor, causes endoplasmic reticulum stress-induced cell death. The aim of this study was to investigate the role of autophagy in deacetylase inhibitor-triggered liver cancer cell death.HepG2 (p53wt) and Hep3B (p53 null) liver cancer cell lines were exposed to panobinostat. RT-qPCR and western blot confirmed autophagic factor modulation. Immuno-fluorescence, -precipitation and -histochemistry as well as transmission electron microscopy verified autophagosome formation. The cytotoxicity of panobinostat and autophagy modulators was detected using a real time cell viability assay.Panobinostat induced autophagy-related factor expression and aggregation. Map1LC3B and Beclin1 were significantly over-expressed in HepG2 xenografts in nude mice treated with panobinostat for 4 weeks. Subcellular distribution of Beclin1 increased with the appearance of autophagosomes-like aggregates. Cytosolic loss of p53, in HepG2, and p73, in Hep3B cells, and a corresponding gain of their nuclear level, together with modulation of DRAM1, were observed. Autophagosome aggregation was visible after 6 h of treatment. Treatment of cells stably expressing GFP-RFPtag Map1LC3B resulted in aggregation and a fluorescence switch, thus confirming autophagosome formation and maturation. Tamoxifen, an inducer of autophagy, caused only a block in cell proliferation; but in combination with panobinostat it resulted in cell death.Autophagy triggers cell demise in liver cancer. Its modulation by the combination of tamoxifen and panobinostat could be a new option for palliative treatment of hepatocellular carcinoma.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here