z-logo
open-access-imgOpen Access
Routine clinical mutation profiling using next generation sequencing and a customized gene panel improves diagnostic precision in myeloid neoplasms
Author(s) -
Stephan Bartels,
Elisa Schipper,
Britta Hasemeier,
Hans Kreipe,
Ulrich Lehmann
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.8310
Subject(s) - medicine , gene expression profiling , profiling (computer programming) , dna sequencing , computational biology , myeloid , precision medicine , gene , bioinformatics , cancer research , genetics , biology , gene expression , computer science , pathology , operating system
Microscopic examination of myelodysplastic syndromes (MDS) and myelodysplastic-myeloproliferative neoplasms (MDS/MPN) may be challenging because morphological features can overlap with those of reactive states. Demonstration of clonal hematopoiesis provides a diagnostic clue and has become possible by comprehensive mutation profiling of a number of frequently mutated genes, some of them with large coding regions.To emphasize the potential benefit of NGS in hematopathology we present sequencing results from routinely processed formalin-fixed and paraffin-embedded (FFPE) bone marrow trephines (n = 192). A customized amplicon-based gene panel including 23 genes frequently mutated in myeloid neoplasms was established and implemented. Thereby, 629,691 reads per sample (range 179,847-1,460,412) and a mean coverage of 2,702 (range 707-6,327) could be obtained, which are sufficient for comprehensive mutational profiling. Seven samples failed in sequencing (3.6%). In 185 samples we found in total 269 pathogenic variants (mean 1.4 variants per patient, range 0-5), 125 Patients exhibit at least one pathogenic mutation (67.6%). Variants show allele frequencies ranging from 6.7% up to 95.7%. Most frequently mutated genes were TET2 (28.7%), SRSF2 (19.5%), ASXL1 (8.6%) and U2AF1 (8.1%). The mutation profiling increases the diagnostic precision and adds prognostic information.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here