Open Access
Methylation-associated silencing of miR-200b facilitates human hepatocellular carcinoma progression by directly targeting BMI1
Author(s) -
Wenrui Wu,
Hong Sun,
Rui Zhang,
Xiaokang Yu,
XiangDe Shi,
Man-Sheng Zhu,
Hong Zeng,
Yan Li,
Lei-Bo Xu,
Chao Liu
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.7629
Subject(s) - microrna , bmi1 , gene silencing , methylation , cancer research , bisulfite sequencing , dna methylation , downregulation and upregulation , biology , hepatocellular carcinoma , microbiology and biotechnology , cancer , gene expression , gene , genetics
This study aims to investigate the biological function of microRNA-200b and BMI1, predicted target of microRNA-200b in human hepatocellular carcinoma (HCC). MicroRNA-200b and BMI1 expression in HCC tissues were evaluated by qPCR. A luciferase reporter assay was used to validate BMI1 as a direct target of microRNA-200b. The effect of microRNA-200b on HCC progression was studied in vitro and in vivo. Methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) were used to detect the methylation status of the microRNA-200b promoter. Significant downregulation of microRNA-200b was observed in 83.3% of HCC tissues. By contrast, BMI1 was significantly overexpressed in 66.7% of HCC tissues. The results of the luciferase assay confirmed BMI1 as a direct target gene of microRNA-200b. Forced expression of microRNA-200b in HCC cells dramatically repressed proliferation, colony formation, cell cycle progression, and invasion. Moreover, microRNA-200b synergized with 5-fluorouracil to induce apoptosis in vitro and suppressed tumorigenicity in vivo. In addition, MSP analysis and BSP revealed that CpG sites in the promoter region of microRNA-200b were extensively methylated in HCC, with concomitant downregulation of microRNA-200b expression. Furthermore, microRNA-200b was activated in HCC cells after treatment with 5-azacytidine, whereas BMI1 expression was clearly downregulated. Our results indicate that microRNA-200b is partially silenced by DNA hypermethylation and that it can repress tumor progression by directly targeting BMI1 in HCC.