z-logo
open-access-imgOpen Access
MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer
Author(s) -
Fei Liu,
Shimeng Zhang,
Zhen Zhao,
Xinru Mao,
Jinlan Huang,
Zhiqiang Wu,
Lei Zheng,
Qian Wang
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.7531
Subject(s) - microrna , apoptosis , oncogene , cell growth , cancer research , paclitaxel , biology , cell cycle , cell , cancer , chemistry , gene , biochemistry , genetics
The infection with high-risk human papillomavirus is linked to cervical cancer, nevertheless, the role of miRNAs regulated by HPV oncogenes in cancer progression remain largely unknown. Here, we knocked down endogenous E6/E7 in HPV16-positive CaSki cell lines, screened differences in miRNA expression profile with control using miRNA array. 38 miRNAs were down-regulated and 6 miRNAs were up-regulated in the E6/E7 silenced CaSki cells (>2-fold changes with P <0.05). The levels of miR-27b, miR-20a, miR-24, miR-93, and miR-106b were verified by qPCR in E6/E7 silenced CaSki and SiHa cells. MiR-27b, up-regulated by E7, promoted CaSki and SiHa cell proliferation and invasion, inhibit paclitaxel-induced apoptosis. Dual-luciferase experiment confirmed miR-27b down-regulated its target gene PLK2 through the "seed regions". The tumor suppressor PLK2 inhibited SiHa cell proliferation, reduced cell viability, and promoted paclitaxel/cisplatin -induced apoptosis. Furthermore, DGCR8 was found to mediate the up-regulation of miR-27b by HPV16 E7. Our study demonstrated that HPV16 E7 could increase DGCR8 to promote the generation of miR-27b, which accelerated cell proliferation and inhibited paclitaxel-induced cell apoptosis through down-regulating PLK2. These findings provide an insight into the interaction network of viral oncogene, miR-27b and PLK2, and support the potential strategies using antisense nucleic acid of miR-27b for therapy of cervical cancer in the future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here