z-logo
open-access-imgOpen Access
Adipose-derived stem cells-seeded bladder acellular matrix graft-silk fibroin enhances bladder reconstruction in a rat model
Author(s) -
Dongdong Xiao,
Qiong Wang,
Hao Yan,
Xiangguo Lv,
Yang Zhao,
Zhe Zhou,
Ming Zhang,
Qian Sun,
Kang Sun,
Wei Li,
Mujun Lu
Publication year - 2017
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.21211
Subject(s) - fibroin , medicine , urology , adipose tissue , tissue engineering , stem cell , surgery , andrology , biomedical engineering , silk , microbiology and biotechnology , biology , computer science , operating system
The unfavourable clinical outcomes of host cell-seeded scaffolds for bladder augmentation warrant improved bioactive biomaterials. This study aimed to examine the feasibility of adipose-derived stem cells (ASCs)-seeded bilayer bladder acellular matrix graft (BAMG)-silk fibroin (SF) scaffold in enhancing bladder reconstruction. Sprague Dawley rats were randomly divided into three groups: the BAMG-SF-ASCs group, the acellular BAMG-SF group and the cystotomy group. The BAMG-SF-ASCs group was sampled at 2, 4 and 12 weeks, and compared with the other groups at 12 weeks. In the BAMG-SF-ASCs group, the normal bladder contour was reformed similar to that in the cystotomy group, with abundant urothelium and smooth muscle regeneration, as well as a suitable scaffold degradation speed, and trivial fibrosis and inflammation. The ASCs seeded in BAMG-SF were maintained in the regenerated region during the 12-week experimental period and significantly enhanced the vessel density, nerve regeneration and bladder function compared with acellular BAMG-SF. In addition, the BAMG-SF-ASCs group presented elevated levels of SDF-1α, VEGF and their receptors, with an obvious increase in ERK 1/2 phosphorylation. BAMG-SF is a promising biomaterial for ASCs seeding to facilitate bladder augmentation and demonstrated an enhanced angiogenic potential possibly related to the SDF-1α/CXCR4 pathway via ERK 1/2 activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom