z-logo
open-access-imgOpen Access
Fatty acid synthase expression and its association with clinico-histopathological features in triple-negative breast cancer
Author(s) -
Ariadna GiróPerafita,
Ariadna Sarrats,
Ferran Pérez-Bueno,
Glòria Oliveras,
María Buxó,
Joan Brunet,
Gemma Viñas,
Teresa Puig
Publication year - 2017
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.20152
Subject(s) - fatty acid synthase , triple negative breast cancer , breast cancer , medicine , immunohistochemistry , cancer , oncology , surgical oncology , cancer research , pathology , lipid metabolism
Triple-Negative Breast Cancer (TNBC) has poor prognosis and no approved targeted therapy. We previously showed that the enzyme fatty acid synthase (FASN) was largely expressed in a small TNBC patients' cohort and its inhibition synergized with cetuximab in TNBC preclinical mouse models. Here, we evaluated FASN and EGFR expression in a cohort of TNBC patients and we study their prognostic role and their association with clinico-histopathological features, intrinsic TNBC subtypes and survival. FASN, EGFR, CK5/6 and vimentin expression were retrospective evaluated by Immunohistochemistry in 100 primary TNBC tumors. FASN expression was classified into high and low FASN groups. EGFR, CK5/6 and vimentin expression were used in TNBC intrinsic subtypes classification. FASN was expressed in most of the TNBC patients but did not correlate with overall survival or disease-free survival in this cohort. High FASN group was significantly associated with positive node status. FASN expression was significantly higher in Basal-Like patients than in Mesenchymal-Like ones. EGFR expression was positive in 50% of the tumors, and those patients showed poorer DFS. Altogether, our findings provide a rationale for further investigation the prognostic role of FASN and EGFR expression in a larger cohort of TNBC patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom