
MicroRNA-137 inhibits BMP7 to enhance the epithelial-mesenchymal transition of breast cancer cells
Author(s) -
Xiaohua Ying,
Yunpo Sun,
Ping He
Publication year - 2017
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.15442
Subject(s) - bone morphogenetic protein 7 , epithelial–mesenchymal transition , cancer research , microrna , breast cancer , medicine , carcinogenesis , cancer , mesenchymal stem cell , transforming growth factor beta , transforming growth factor , bone morphogenetic protein , metastasis , pathology , biology , gene , biochemistry
Bone morphogenetic protein-7 (BMP7) is known to antagonize transforming growth factor β 1 (TGFβ1)-mediated fibrosis through suppressing epithelial-mesenchymal transition (EMT). We recently reported that BMP7 also antagonizes the effects of TGFβ1 in breast cancer (BC) tumorigenesis-related EMT. Nevertheless, the control of BMP7 expression in BC remains ill-defined. Here, we detected significantly lower levels of BMP7 and significantly higher levels of microRNA-137 (miR-137) in the BC specimens, relative to paired adjacent non-tumor breast tissue. BMP7 and miR-137 levels were correlated inversely. Additionally, the high miR-137 levels in BC specimens were correlated with reduced patient survival. In vitro, overexpression of miR-137 significantly increased cell EMT and invasion, while depletion of miR-137 significantly decreased cell EMT and invasion in BC cells. The increases in BC cell invasiveness by miR-137 appeared to result from its suppression of BMP7, through direct binding of miR-137 to the 3'-UTR of BMP7 mRNA, thereby blocking its protein translation in BC cells. This study sheds light on miR-137 as a crucial factor that enhances BC cell EMT and invasiveness, and points to miR-137 as a promising innovative therapeutic target for BC treatment.