z-logo
open-access-imgOpen Access
CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner
Author(s) -
Hadjer Abdelouahab,
Yanyan Zhang,
Monika Wittner,
Shinya Oishi,
Nobutaka Fujii,
Rodolphe Besancenot,
Isabelle Plo,
Vincent Ribrag,
Éric Solary,
William Vainchenker,
Giovanni Barosi,
Fawzia Louache
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.10789
Subject(s) - cxcr4 , crosstalk , haematopoiesis , signal transduction , pi3k/akt/mtor pathway , cancer research , microbiology and biotechnology , progenitor cell , chemotaxis , stem cell , cd34 , biology , chemistry , chemokine , immunology , receptor , inflammation , biochemistry , physics , optics
JAK2 activation is the driver mechanism in BCR-ABL- negative myeloproliferative neoplasms (MPN). These diseases are characterized by an abnormal retention of hematopoietic stem cells within the bone marrow microenvironment and their increased trafficking to extramedullary sites. The CXCL12/CXCR4 axis plays a central role in hematopoietic stem cell/ progenitor trafficking and retention in hematopoietic sites. The present study explores the crosstalk between JAK2 and CXCL12/CXCR4 signaling pathways in MPN. We show that JAK2, activated by either MPL-W515L expression or cytokine stimulation, cooperates with CXCL12/CXCR4 signaling to increase the chemotactic response of human cell lines and primary CD34 + cells through an increased phosphatidylinositol-3-kinase (PI3K) signaling. Accordingly, primary myelofibrosis (MF) patient cells demonstrate an increased CXCL12-induced chemotaxis when compared to controls. JAK2 inhibition by knock down or chemical inhibitors decreases this effect in MPL-W515L expressing cell lines and reduces the CXCL12/CXCR4 signaling in some patient primary cells. Taken together, these data indicate that CXCL12/CXCR4 pathway is overactivated in MF patients by oncogenic JAK2 that maintains high PI3K signaling over the threshold required for CXCR4 activation. These results suggest that inhibition of this crosstalk may contribute to the therapeutic effects of JAK2 inhibitors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here