z-logo
open-access-imgOpen Access
RRD-251 enhances all-trans retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells
Author(s) -
Aaron S. Wallace,
Harrison T. Supnick,
Rodica P. Bunaciu,
Andrew Yen
Publication year - 2016
Publication title -
oncotarget
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.373
H-Index - 127
ISSN - 1949-2553
DOI - 10.18632/oncotarget.10136
Subject(s) - retinoblastoma protein , retinoic acid , e2f , cellular differentiation , retinoblastoma , cancer research , chemistry , apoptosis , microbiology and biotechnology , biology , cell cycle , biochemistry , gene
All-trans-retinoic acid (RA) is known to induce terminal granulocytic differentiation and cell cycle arrest of HL-60 cells. Responding to an RA-induced cytosolic signaling machine, c-Raf translocates to the nucleus, providing propulsion for RA-induced differentiation. This novel mechanism is not understood, but presumably reflects c-Raf binding with nuclear gene regulatory proteins. RRD-251 is a small molecule that prevents the interaction of c-Raf and RB, the retinoblastoma tumor suppressor protein. The involvement of c-Raf and RB in RA-induced differentiation motivates interest in the effects of combined RA and RRD-251 treatment on leukemic cell differentiation. We demonstrate that RRD-251 enhances RA-induced differentiation. Mechanistically, we find that nuclear translocated c-Raf associates with pS608 RB. RA causes loss of pS608 RB, where cells with hypophosphorylated S608 RB are G0/G1 restricted. Corroborating the pS608 RB hypophosphorylation, RB sequestration of E2F increased with concomitant loss of cdc6 expression, which is known to be driven by E2F. Hypophosphorylation of S608 RB releases c-Raf from RB sequestration to bind other nuclear targets. Release of c-Raf from RB sequestration results in enhanced association with GSK-3 which is phosphorylated at its S21/9 inhibitory sites. c-Raf binding to GSK-3 is associated with dissociation of GSK-3 and RARα, thereby relieving RARα of GSK-3 inhibition. RRD-251 amplifies each of these RA-induced events. Consistent with the posited enhancement of RARα transcriptional activity by RRD-251, RRD-251 increases the RARE-driven CD38 expression per cell. The RA/c-Raf/GSK-3/RARα axis emerges as a novel differentiation regulatory mechanism susceptible to RRD-251, suggesting enhancing RA-effects with RRD-251 in therapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom